

用现代设备改造传统的粉磨工业是实现低成本的动力之源和必要手段。这对推动打磨技术进步、提高劳动者素质、提高铸造企业效益、优化产业结构调整、促进制造业发展具有重要意义。同时,市场对具有快速响应、高精度和薄脆性的工艺也有很大的期望。
复杂工件打磨的技术挑战:快速响应、薄脆性和高精度
快速响应、高精度、薄脆性是市场在高体积、低成本基础上的进一步需求,也是目前实验室研究人员正在攻关的方面。







由于缺乏一种测量相对速度和压力的方法,这种经验法则还没有被应用于精加工在哪里dV/dt是表面缩进距离(mm/s),t是时间,Vis表示体积。1/k是普雷斯顿系数的单位k,F是接触力,v是工件和刀具之间的相对速度。
研究人员研究了方程,卡斯蒂洛-梅希亚基于普雷斯顿方程提出了打磨中局部材料去除率的相关表达式。Lee等人建立了基于普雷斯顿方程的打磨材料去除率模型,用于实时独立地改变压力和速度。在上述研究中,普雷斯顿系数、打磨力和转速被视为恒定值。打磨过程中,磨头对工件进行打磨,工件表面的材料性质随着热量的积累而发生变化。因此,使用恒定的抛光系数无法准确预测材料去除量,K. Pan R等人提出了基于界面摩擦系数的非常规k构造修正函数,并通过实验验证了其有效性。


工作单元包括一个操作员站,操作员可以在此从列表中搜索和选择生产零件号。选择零件号后,视觉系统会扫描零件,并将其与系统控制器中存档的3D参考图像进行比较。此步骤验证工作单元中是否存在正确的零件。视觉系统还会扫描铸件浇口和排气孔等显著特征,以确定零件的位置和方向。使用该输入,机器人进行多点触发循环,以提供零件位置的验证。
这种硬件和软件功能的组合使得机器人打磨工作单元在打磨复杂零件时可重复、可靠且。初步演示表明,周期时间提高了300%,没有废料。